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ABSTRACT
Hydrogenation of alkynes in the presence of carbonyl compounds
and imines using cationic rhodium(I) and iridium(I) precatalysts
enables the formation of allylic alcohols and allylic amines,
respectively. Through the use of hydrogenation catalysts modified
by chiral ligands, allylic alcohols and allylic amines may be
generated in highly optically enriched forms. Hydrogenative frag-
ment couplings of this type circumvent the use of preformed
organometallic reagents and avoid the generation of stoichiometric
byproducts.

Introduction to Carbonyl and Imine Vinylation
The synthetic utility of allylic alcohols and allylic amines
has driven efforts toward the development of catalytic
enantioselective protocols for the vinylation of carbonyl
compounds and imines. The majority of work in this area
stems from the seminal studies of Oguni1a and Noyori1b

on the enantioselective addition of dialkylzinc reagents
to aldehydes.2 The first asymmetric aldehyde vinylations
of this type were reported by Oppolzer3a,4 and involve the
generation of vinylzinc reagents via alkyne hydroboration,
followed by transmetalation of the resulting vinyl boron

reagent to zinc using ZnMe2. A related strategy for
asymmetric aldehyde vinylation is reported by Wipf and
involves alkyne hydrozirconation–transmetalation en route
to vinylzinc reagents.3d Finally, after catalytic enantio-
selective additions of alkylzinc and arylzinc reagents to
ketones2b–d described by Yus5a,b and Fu,5c respectively,
catalytic asymmetric ketone vinylations were devised by
Walsh.6

Parallel efforts toward the development of enantio-
selective imine additions using preformed metallic re-
agents reveal an additional set of challenges.7 Pursuant
to Soai’s seminal report,8a several organocatalysts for the
enantioselective addition of organozinc reagents to imines
emerged.8 Because conventional imines are generally less
reactive than aldehydes with respect to organocatalyzed
organozinc addition, these studies employ N-acyl and
N-(diphenylphosphinoyl) imines. To address the issue of
reactivity, enantioselective metal-catalyzed organozinc
additions to imines were developed,9 as first described by
Tomioka in the case of copper.9a Early transition-metal
catalysts (Ti, Zr, and Hf)10 and late transition-metal
catalysts (Rh)11 also have been found to promote highly
enantioselective organozinc additions to imines.

Beyond organozinc reagents, the enantioselective ad-
dition of organolithium reagents to imines catalyzed by
chiral Lewis basic chelating agents has been described.12

Additionally, under the conditions of rhodium catalysis,
organotin,13a,b organotitanium,13c and organoboron13d–h

reagents have served in catalytic asymmetric imine ad-
ditions. Despite considerable effort, highly enantioselec-
tive vinyl transfer to imines employing preformed orga-
nometallic reagents has not been achieved.14,15

The aforementioned approaches to enantioselective
carbonyl and imine vinylation are highly effective in terms
of directing enantioselection. However, these strategies
uniformly exploit preformed organometallic reagents,
which are generally prepared via transmetalation from a
“primary organometallic reagent”, which itself may require
preparation through metalation of a precursor. For ex-
ample, organoboron reagents are generally prepared from
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are prepared by metal halogen exchange using butyl
lithium. Here, three preformed organometallic reagents
are used stoichiometrically in advance of C–C coupling.
Such protocols mandate the generation of multiple stoi-
chiometric byproducts and require the handling of mul-
tiple air- and moisture-sensitive materials (Scheme 1).

Direct metal-catalyzed reductive coupling circumvents
the successive use of stoichiometrically preformed orga-
nometallic reagents.16 Of direct relevance to this Account
are catalysts enabling direct alkyne–aldehyde reductive
coupling.17 The first catalytic process of this type was
reported by Ojima and involves the rhodium-catalyzed
reductive cyclization of acetylenic aldehydes mediated by
silane.18 Corresponding titanocene-catalyzed cyclizations
were disclosed by Crowe,19 and nickel-catalyzed cycliza-
tions were reported by Montgomery.20a–c,e Finally, inter-
molecular reductive alkyne–aldehyde coupling was achieved
using nickel-based catalysts, as described by Jamison,21

Takai,22 and Montgomery.20d Reductive couplings of this
type involve the capture of organometallics that arise tran-
siently under catalytic conditions, signaling a departure
from the stoichiometric preformation of organometallic
reagents. However, the aforementioned methods employ
terminal reductants, such as hydrosilanes, hydrostan-
nanes, organozinc reagents, organoboron reagents, or
chromium(II) chloride, which ultimately produce molar
equivalents of chemical byproducts.

Completely atom economical and, hence, byproduct-
free reductive C–C couplings are potentially achieved
under the conditions of catalytic hydrogenation. Despite
the fact that catalytic hydrogenation of organic com-
pounds has been known for over a century,23 use of
elemental hydrogen as a terminal reductant in metal-
catalyzed C–C coupling has only been explored in con-
nection with processes involving carbon monoxide inser-
tion, as exemplified by the Fischer–Tropsch24 reaction and
alkene hydroformylation.25 Despite the impact of these
prototypical hydrogen-mediated C–C bond formations,
systematic efforts toward hydrogenative C–C couplings

that apply to conventional electrophilic partners in the
form of carbonyl compounds and imines were absent
from the literature prior to our work.26–29

In this Account, we present a summary of our work on
the hydrogenative coupling of alkynes to carbonyl com-
pounds and imines to furnish allylic alcohols and allylic
amines. Related hydrogenative couplings of alkenes to
carbonyl compounds and imines, as exemplified by the
hydrogen-mediated reductive aldol and Mannich reaction,
and the hydrogen-mediated coupling of olefins to anhy-
drides are the subject of recent reviews.26,30 The collective
hydrogenative fragment couplings that we report consti-
tute a broad new class of catalytic C–C bond formations
that circumvent byproduct generation and the require-
ment of stoichiometrically preformed organometallic re-
agents in certain CdX (X ) O, NR) addition processes.

Hydrogenative Coupling of Alkynes to Carbonyl
Compounds and Imines
Proof of concept studies toward the development of first-
generation catalysts for hydrogenative C–C coupling, along
with preliminary mechanistic studies corroborating their
proposed mode of action, are described in prior ac-
counts.26 Salient features are summarized below. The
collective data are consistent with a general mechanism
involving alkyne–CdX (X ) O, NR) oxidative coupling
followed by direct or Brønsted acid co-catalyzed hydro-
genolysis of the resulting metallacyclic intermediate. To
mitigate competitive conventional substrate hydrogena-
tion, cationic complexes of rhodium and iridium are
required. A plausible explanation is as follows. Unlike
corresponding neutral complexes, hydrogen activation is
generally slower for cationic rhodium precatalysts,31,32

thus providing a greater kinetic window for entry into
alkyne–CdX (X ) O, NR) oxidative coupling manifolds.
Oxidative coupling pathways are promoted further by the
increased coordinative unsaturation of cationic com-
plexes. As supported by theoretical studies,33 Brønsted
acid co-catalysts are postulated to circumvent highly
energetic four-centered transition structures “A” for σ-bond
metathesis, as required for direct hydrogenolysis of metal-
lacyclic intermediates, with six-centered transition struc-
tures “C” for hydrogenolysis of rhodium carboxylates
derived upon metallacycle protonolysis, which itself may
occur through six-centered transition structure “B”. The
collective data suggest that the oxarhodacyclopentene is
the catalyst resting state and that hydrogenolysis of the
oxarhodacyclopentene is the turnover limiting step in the
catalytic mechanism (Scheme 1).

When conjugated alkynes are simply hydrogenated in
the presence of vicinal dicarbonyl compounds, glyoxalates,
and pyruvates, at ambient pressure using chirally modified
cationic rhodium catalysts, reductive C–C coupling occurs
to furnish R-hydroxy esters in highly optically enriched
form.34a,b Under nearly identical conditions, conjugated

Scheme 1. General Catalytic Mechanism for Hydrogenative
Alkyne–Carbonyl Coupling
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alkynes hydrogenatively couple to heterocyclic aromatic
aldehydes and ketones that are isoelectronic with respect
to the vicinal dicarbonyl motif, thereby providing access
to highly optically enriched heteroaryl-substituted sec-
ondary and tertiary alcohols. 34c Hydrogenation of 1,3-
enynes in the presence of optically enriched ethyl (N-

sulfinyl)iminoacetates delivers novel nonproteogenic amino
acid esters.34d Finally, catalytic hydrogenation of acetylenic
aldehydes using chirally modified rhodium catalysts pro-
vides products of reductive carbocyclization, again with
excellent levels of asymmetric induction. 34e Brønsted acid
co-catalysts were found to enhance the rate and con-

Scheme 2. Rhodium-Catalyzed Hydrogenative C–C Coupling of Alkynes to Carbonyl Compounds and Imines
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version in all couplings examined. Couplings to ethyl (N-
sulfinyl)iminoacetates were studied prior to the discovery
of the Brønsted acid co-catalyst effect (Scheme 2).

Intermolecular hydrogenative couplings of alkynes to
carbonyl compounds under the conditions of rhodium
catalysis require highly activated electrophilic partners,
such as vicinal dicarbonyl compounds and their structural
relatives. It was found that gaseous acetylene couples to
conventional aldehydes under hydrogenation conditions
to furnish products of Z-butadienylation.35a Isotopic label-
ing and electrospray ionization mass spectrometry (ESI–
MS) analysis are consistent with a catalytic mechanism
involving oxidative dimerization of acetylene to form a
cationic rhodacyclopentadiene36 followed by carbonyl
insertion and Brønsted-acid-assisted hydrogenolysis of the

resulting oxarhodacycloheptadiene to provide the carbo-
nyl addition product and cationic rhodium(I) to close the
cycle. More recently, corresponding couplings to aldi-
mines have been achieved.35b For both aldehyde and
imine couplings, chirally modified rhodium catalysts
deliver highly optically enriched allylic alcohols and allylic
amines, respectively (Scheme 3).

Attempted imine vinylation under the conditions of
rhodium catalysis using 1,2-dialkylsubsituted alkynes is
not an efficient process. Our rationale for addressing this
limitation is as follows. In hydrogenative alkyne–carbonyl
coupling, our collective studies suggest that a key feature
of the catalytic mechanism involves oxidative coupling of
the π-unsaturated reactants to furnish oxametallacyclic
intermediates. Hydrogenolytic cleavage of this species via

Scheme 3. Enantioselective (Z)-Butadienylation via Hydrogenative Coupling of Acetylene to Aldehydes and Imines

Scheme 4. Enantioselective Iridium-Catalyzed Hydrogenative Coupling of 2-Butyne to Aldehydes and Imines
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σ-bond metathesis furnishes the coupling product with
concomitant regeneration of the catalyst. It is plausible
that π-backbonding in the metal–alkyne complex, as
described by the Dewar–Chatt–Duncanson model,37 fa-
cilitates the oxidative coupling event by conferring nu-
cleophilic character to the bound alkyne. For rhodium, a
comparatively weak π donor, conjugated alkynes are re-
quired, possibly because of the fact that they embody lower
lying unoccupied molecular orbitals (LUMOs). Iridium is a
stronger π donor than rhodium because of relativistic
effects.38,39 These data suggest that iridium complexes may
catalyze the hydrogenative coupling of nonconjugated alkynes
that embody higher lying LUMOs.

The veracity of this analysis was challenged through
experiment. Gratifyingly, it was found that using [Ir(cod)2]-
BARF as a precatalyst, hydrogenation of 2-butyne in the
presence of R-benzyloxy acetaldehyde provides an 81%
isolated yield of the fully saturated reductive coupling
product as an equimolar mixture of diastereomers. Here,
the initially formed allylic alcohol is subject to further
hydrogenation to deliver the saturated alcohol. In contrast,
iridium-catalyzed hydrogenation of 2-butyne in the pres-
ence of various N-arylsulfonyl imines provides the corre-
sponding trisubstituted allylic amines with complete levels
of E/Z selectivity (g95:5) and, using catalysts modified by
(R)-Cl,MeO-BIPHEP, exceptional levels of asymmetric
induction.40 Notably, over-reduction of the unsaturated
allylic amines are not observed. These results are consis-
tent with the role of hydroxyl and sulfonamide moieties
as active and inactive volumes, respectively, in iridium-
catalyzed hydrogenation.41 The nonsymmetric alkynes
4-methyl-2-pentyne and 2-hexyne couple to N-arylsulfonyl
imines with excellent regioselectivity proximal to the more
highly substituted alkyne terminus to provide the corre-
sponding allylic amines with uniformly high levels of
enantiomeric excess (Scheme 4).

Future Directions
The prototypical C–C bond-forming hydrogenations, the
Fischer–Tropsch reaction and alkene hydroformylation,
were reported over half a century ago and are practiced
on an enormous scale.24,25 While these processes are
restricted to the use of carbon monoxide as a coupling
partner, studies from our laboratory extend hydrogenative
C–C coupling to the use of conventional electrophiles in
the form of carbonyl compounds and imines. The genera-
tion and capture of nonstabilized carbanion equivalents
under the essentially neutral conditions of hydrogenation
dispenses with the requirement of stoichiometrically
preformed organometallic reagents in certain CdX (X )
O, NR) addition processes, enabling C–C bond formation
in the absence of any stoichiometric byproducts. These
studies open a new chapter in the area of catalytic
hydrogenation and raise numerous possibilities vis-à-vis
development of related byproduct-free C–C couplings.
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